20 static const PN_stdfloat cylindrical_k = 60.0f;
27 PT(
Lens) CylindricalLens::
43 bool CylindricalLens::
44 do_extrude(
const Lens::CData *lens_cdata,
45 const LPoint3 &point2d, LPoint3 &near_point, LPoint3 &far_point)
const {
48 LPoint3 f = point2d * do_get_film_mat_inv(lens_cdata);
50 PN_stdfloat focal_length = do_get_focal_length(lens_cdata);
51 PN_stdfloat angle = f[0] * cylindrical_k / focal_length;
52 PN_stdfloat sinAngle, cosAngle;
53 csincos(deg_2_rad(angle), &sinAngle, &cosAngle);
57 LPoint3 v(sinAngle, cosAngle, f[1] / focal_length);
61 const LMatrix4 &lens_mat = do_get_lens_mat(lens_cdata);
62 const LMatrix4 &proj_inv_mat = do_get_projection_mat_inv(lens_cdata);
64 near_point = (v * do_get_near(lens_cdata)) * proj_inv_mat * lens_mat;
65 far_point = (v * do_get_far(lens_cdata)) * proj_inv_mat * lens_mat;
83 bool CylindricalLens::
84 do_extrude_vec(
const Lens::CData *lens_cdata,
const LPoint3 &point2d, LVector3 &vec)
const {
87 LPoint3 f = point2d * do_get_film_mat_inv(lens_cdata);
89 PN_stdfloat focal_length = do_get_focal_length(lens_cdata);
90 PN_stdfloat angle = f[0] * cylindrical_k / focal_length;
91 PN_stdfloat sinAngle, cosAngle;
92 csincos(deg_2_rad(angle), &sinAngle, &cosAngle);
94 vec = LVector3(sinAngle, cosAngle, 0.0f) * do_get_projection_mat_inv(lens_cdata) * do_get_lens_mat(lens_cdata);
111 bool CylindricalLens::
112 do_project(
const Lens::CData *lens_cdata,
const LPoint3 &point3d, LPoint3 &point2d)
const {
114 LPoint3 p = point3d * do_get_lens_mat_inv(lens_cdata) * do_get_projection_mat(lens_cdata);
119 LVector2 xy(p[0], p[1]);
122 PN_stdfloat pdist = xy.length();
124 point2d.set(0.0f, 0.0f, 0.0f);
128 PN_stdfloat focal_length = do_get_focal_length(lens_cdata);
131 PN_stdfloat z = (pdist - do_get_near(lens_cdata)) / (do_get_far(lens_cdata) - do_get_near(lens_cdata));
136 rad_2_deg(catan2(xy[0], xy[1])) * focal_length / cylindrical_k,
138 p[2] * focal_length / pdist,
144 point2d = point2d * do_get_film_mat(lens_cdata);
147 point2d[0] >= -1.0f && point2d[0] <= 1.0f &&
148 point2d[1] >= -1.0f && point2d[1] <= 1.0f;
157 PN_stdfloat CylindricalLens::
158 fov_to_film(PN_stdfloat fov, PN_stdfloat focal_length,
bool horiz)
const {
160 return focal_length * fov / cylindrical_k;
162 return (ctan(deg_2_rad(fov * 0.5f)) * focal_length) * 2.0f;
172 PN_stdfloat CylindricalLens::
173 fov_to_focal_length(PN_stdfloat fov, PN_stdfloat film_size,
bool horiz)
const {
175 return film_size * cylindrical_k / fov;
177 return film_size * 0.5f / ctan(deg_2_rad(fov * 0.5f));
187 PN_stdfloat CylindricalLens::
188 film_to_fov(PN_stdfloat film_size, PN_stdfloat focal_length,
bool horiz)
const {
190 return film_size * cylindrical_k / focal_length;
192 return rad_2_deg(catan(film_size * 0.5f / focal_length)) * 2.0f;
A base class for any number of different kinds of lenses, linear and otherwise.
TypeHandle is the identifier used to differentiate C++ class types.
PANDA 3D SOFTWARE Copyright (c) Carnegie Mellon University.
PANDA 3D SOFTWARE Copyright (c) Carnegie Mellon University.