20 INLINE EggTransform::Component::
21 Component(EggTransform::ComponentType type,
double number) :
36 INLINE EggTransform::Component::
37 Component(
const EggTransform::Component ©) :
64 INLINE
void EggTransform::Component::
65 operator = (
const EggTransform::Component ©) {
67 _number = copy._number;
103 INLINE EggTransform::Component::
126 internal_clear_transform();
138 internal_add_matrix(mat);
150 internal_add_matrix(mat);
164 return !_components.empty();
193 internal_set_transform(mat);
223 internal_set_transform(mat);
237 return LMatrix3d(t(0, 0), t(0, 1), t(0, 3),
238 t(1, 0), t(1, 1), t(1, 3),
239 t(3, 0), t(3, 1), t(3, 3));
263 return _components.empty() ||
275 return _components.size();
285 nassertr(n >= 0 && n < (
int)_components.size(), CT_invalid);
286 return _components[n]._type;
300 nassertr(n >= 0 && n < (
int)_components.size(), 0.0);
301 return _components[n]._number;
317 return *_components[n]._vec2;
333 return *_components[n]._vec3;
347 return *_components[n]._mat3;
361 return *_components[n]._mat4;
370 INLINE
void EggTransform::
371 internal_set_transform(
const LMatrix3d &mat) {
372 internal_clear_transform();
373 internal_add_matrix(mat);
382 INLINE
void EggTransform::
383 internal_set_transform(
const LMatrix4d &mat) {
384 internal_clear_transform();
385 internal_add_matrix(mat);
This is a 4-by-4 transform matrix.
This is a two-component vector offset.
This is the base class for all two-component vectors and points.
static const LVector3d & zero()
Returns a zero-length vector.
This is a 3-by-3 transform matrix.
bool almost_equal(const LMatrix4d &other, double threshold) const
Returns true if two matrices are memberwise equal within a specified tolerance.
static const LMatrix4d & ident_mat()
Returns an identity matrix.
static const LVector2d & zero()
Returns a zero-length vector.
This is the base class for all three-component vectors and points.
This is a three-component vector distance (as opposed to a three-component point, which represents a ...
static const LMatrix3d & ident_mat()
Returns an identity matrix.